3.628 \(\int \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=237 \[ \frac{b \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \text{EllipticF}\left (\frac{1}{2} (c+d x),\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}+\frac{\sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}{d}-\frac{\sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{a \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}} \]

[Out]

(b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*
Sec[c + d*x]]) + (a*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c +
d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) - (EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt
[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x]
)/d

________________________________________________________________________________________

Rubi [A]  time = 0.652906, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 12, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.48, Rules used = {3855, 4109, 3859, 2807, 2805, 3862, 3856, 2655, 2653, 3858, 2663, 2661} \[ \frac{\sin (c+d x) \sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}}{d}+\frac{b \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}}-\frac{\sqrt{a+b \sec (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+\frac{a \sqrt{\sec (c+d x)} \sqrt{\frac{a \cos (c+d x)+b}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{d \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(b*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*
Sec[c + d*x]]) + (a*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c +
d*x]])/(d*Sqrt[a + b*Sec[c + d*x]]) - (EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(d*Sqrt
[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (Sqrt[Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x]
)/d

Rule 3855

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*d*C
os[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1))/(f*(2*n - 1)), x] + Dist[d^2/(2*n - 1), Int[((d
*Csc[e + f*x])^(n - 2)*Simp[2*a*(n - 2) + b*(2*n - 3)*Csc[e + f*x] + a*Csc[e + f*x]^2, x])/Sqrt[a + b*Csc[e +
f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 4109

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)
]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[
A, Int[1/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2
 - b^2, 0]

Rule 3859

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(d*Sqr
t[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3862

Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[1/a,
 Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[b/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b
*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3856

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3858

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(Sqrt[d*
Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]])/Sqrt[a + b*Csc[e + f*x]], Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \sec ^{\frac{3}{2}}(c+d x) \sqrt{a+b \sec (c+d x)} \, dx &=\frac{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{1}{2} \int \frac{-a+a \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}-\frac{1}{2} a \int \frac{1}{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)}} \, dx+\frac{1}{2} a \int \frac{\sec ^{\frac{3}{2}}(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=\frac{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}-\frac{1}{2} \int \frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{\sec (c+d x)}} \, dx+\frac{1}{2} b \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+b \sec (c+d x)}} \, dx+\frac{\left (a \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{b+a \cos (c+d x)}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}\\ &=\frac{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{\left (b \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{b+a \cos (c+d x)}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}+\frac{\left (a \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}-\frac{\sqrt{a+b \sec (c+d x)} \int \sqrt{b+a \cos (c+d x)} \, dx}{2 \sqrt{b+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ &=\frac{a \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}+\frac{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}+\frac{\left (b \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt{a+b \sec (c+d x)}}-\frac{\sqrt{a+b \sec (c+d x)} \int \sqrt{\frac{b}{a+b}+\frac{a \cos (c+d x)}{a+b}} \, dx}{2 \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}\\ &=\frac{b \sqrt{\frac{b+a \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}+\frac{a \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{\sec (c+d x)}}{d \sqrt{a+b \sec (c+d x)}}-\frac{E\left (\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right ) \sqrt{a+b \sec (c+d x)}}{d \sqrt{\frac{b+a \cos (c+d x)}{a+b}} \sqrt{\sec (c+d x)}}+\frac{\sqrt{\sec (c+d x)} \sqrt{a+b \sec (c+d x)} \sin (c+d x)}{d}\\ \end{align*}

Mathematica [C]  time = 5.13251, size = 321, normalized size = 1.35 \[ \frac{\sqrt{a+b \sec (c+d x)} \left (-\frac{2 i \csc (c+d x) \sqrt{-\frac{a (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{a (\cos (c+d x)+1)}{a-b}} \left (a \left (2 b \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{\frac{1}{a-b}} \sqrt{a \cos (c+d x)+b}\right ),\frac{b-a}{a+b}\right )+a \Pi \left (1-\frac{a}{b};i \sinh ^{-1}\left (\sqrt{\frac{1}{a-b}} \sqrt{b+a \cos (c+d x)}\right )|\frac{b-a}{a+b}\right )\right )-2 b (a+b) E\left (i \sinh ^{-1}\left (\sqrt{\frac{1}{a-b}} \sqrt{b+a \cos (c+d x)}\right )|\frac{b-a}{a+b}\right )\right )}{a b \sqrt{\frac{1}{a-b}} \sqrt{a \cos (c+d x)+b}}+\frac{2 a \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 a}{a+b}\right )}{(a+b) \sqrt{\frac{a \cos (c+d x)+b}{a+b}}}+4 \tan (c+d x)\right )}{4 d \sqrt{\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Sqrt[a + b*Sec[c + d*x]]*((2*a*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/((a + b)*Sqrt[(b + a*Cos[c + d*x])/
(a + b)]) - ((2*I)*Sqrt[-((a*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(a*(1 + Cos[c + d*x]))/(a - b)]*Csc[c + d*x]*
(-2*b*(a + b)*EllipticE[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*(2*b*Ell
ipticF[I*ArcSinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)] + a*EllipticPi[1 - a/b, I*Arc
Sinh[Sqrt[(a - b)^(-1)]*Sqrt[b + a*Cos[c + d*x]]], (-a + b)/(a + b)])))/(a*Sqrt[(a - b)^(-1)]*b*Sqrt[b + a*Cos
[c + d*x]]) + 4*Tan[c + d*x]))/(4*d*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.353, size = 788, normalized size = 3.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(1/2),x)

[Out]

1/d/((a-b)/(a+b))^(1/2)*(cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c
)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-cos(d*x+c)^2*sin(
d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-
b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b-2*cos(d*x+c)^2*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),
I/((a-b)/(a+b))^(1/2))*a+cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+
1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a-cos(d*x+c)*sin(d*x+
c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(
a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b-2*cos(d*x+c)*sin(d*x+c)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1
))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticPi((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(a+b)/(a-b),I/((a-
b)/(a+b))^(1/2))*a-cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a+cos(d*x+c)*((a-b)/(a+b))^(1/2)*a-cos(d*x+c)*((a-b)/(a+b)
)^(1/2)*b+((a-b)/(a+b))^(1/2)*b)*cos(d*x+c)*(1/cos(d*x+c))^(3/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/(b+a*cos(
d*x+c))/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(3/2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(3/2), x)